Antinociceptive Effect of Tetrandrine on LPS-Induced Hyperalgesia via the Inhibition of IKKβ Phosphorylation and the COX-2/PGE2 Pathway in Mice

نویسندگان

  • Hengguang Zhao
  • Fuling Luo
  • Hongzhong Li
  • Li Zhang
  • Yongfen Yi
  • Jingyuan Wan
چکیده

Tetrandrine (TET) is a bisbenzylisoquinoline alkaloid that is isolated from the Stephania Tetrandra. It is known to possess anti-inflammatory and immunomodulatory effects. We have shown that TET can effectively suppress the production of bacterial lipopolysaccharide (LPS)-induced inflammatory mediators, including cyclooxygenases (COXs), in macrophages. However, whether TET has an antinociceptive effect on LPS-induced hyperalgesia is unknown. In the present study, we investigated the potential antinociceptive effects of TET and the mechanisms by which it elicits its effects on LPS-induced hyperalgesia. LPS effectively evoked hyperalgesia and induced the production of PGE2 in the sera, brain tissues, and cultured astroglia. TET pretreatment attenuated all of these effects. LPS also activated inhibitor of κB (IκB) kinase β (IKKβ) and its downstream components in the IκB/nuclear factor (NF)-κB signaling pathway, including COX-2; the increase in expression levels of these components was significantly abolished by TET. Furthermore, in primary astroglia, knockdown of IKKβ, but not IKKα, reversed the effects of TET on the LPS-induced increase in IκB phosphorylation, P65 phosphorylation, and COX-2. Our results suggest that TET can effectively exert antinociceptive effects on LPS-induced hyperalgesia in mice by inhibiting IKKβ phosphorylation, which leads to the reduction in the production of important pain mediators, such as PGE2 and COX-2, via the IKKβ/IκB/NF-κB pathway.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thiazolidinedione Derivative Suppresses LPS-induced COX-2 Expression and NO Production in RAW 264.7 Macrophages

The present study was designed to investigate the inhibitory effect of 2,4 bis-[(4-ethoxyphenyl)azo] 5-(3-hydroxybenzylidene) thiazolidine-2,4-dione (TZD-OCH2CH3) on the cyclo-oxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in RAW 264.7 cells. The effects of TZD-OCH2CH3 on COX-2 and iNOS mRNA expression in LPS-activated RAW 264.7 cells ...

متن کامل

Thiazolidinedione Derivative Suppresses LPS-induced COX-2 Expression and NO Production in RAW 264.7 Macrophages

The present study was designed to investigate the inhibitory effect of 2,4 bis-[(4-ethoxyphenyl)azo] 5-(3-hydroxybenzylidene) thiazolidine-2,4-dione (TZD-OCH2CH3) on the cyclo-oxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in RAW 264.7 cells. The effects of TZD-OCH2CH3 on COX-2 and iNOS mRNA expression in LPS-activated RAW 264.7 cells ...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

Anti-inflammatory Effects of Oxymatrine Through Inhibition of Nuclear Factor–kappa B and Mitogen-activated Protein Kinase Activation in Lipopolysaccharide-induced BV2 Microglia Cells

Oxymatrine, a potent monosomic alkaloid extracted from Chinese herb Sophora japonica (Sophora flavescens Ait.). possesses anti-inflammatory activittyes.  This study was designed to investigate the effects of oxymatrine on nuclear factor–kappa B (NF-κB) and mitogen-activated protein kinase (MAPK)-dependent inflammatory responses in lipopolysaccharide (LPS)-activated microglia. In this paper, BV2...

متن کامل

The effect of fluoxetine on thermal hyperalgesia in STZ-induced diabetic mice: possible involvement of 5-HT1/2 receptors

Diabetic neuropathic pain, an important micro vascular complication in diabetes mellitus, has been recognized as one of the most difficult types of pain to treat. Lack of understanding of etiology involved, inadequate relief, development of tolerance and potential toxicity of classical anti-nociceptive agents warrants the investigation of newer agents to relieve this pain. The aim of the presen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014